Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.12.561993

RESUMO

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. For positive-sense, single-stranded RNA viruses, several studies have attempted to monitor viral kinetics in vivo using reporter genomes. The application of such recombinant viruses can be limited by challenges in accommodating bioluminescent reporter genes in the viral genome. Conventional luminescence also exhibits relatively low tissue permeability and thus less sensitivity for visualization in vivo. Here we show that unlike NanoLuc bioluminescence, the improved method, termed AkaBLI, allows visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Syrian hamsters. By successfully incorporating a codon-optimized Akaluc luciferase gene into the SARS-CoV-2 genome, we visualized in vivo infection, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of neutralizing antibodies and mRNA vaccination by monitoring changes in Akaluc signals. Overall, AkaBLI is an effective technology for monitoring viral dynamics in live animals.


Assuntos
COVID-19 , Infecções por Coronavirus
2.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.08.16.553332

RESUMO

Circulation of SARS-CoV-2 Omicron XBB has resulted in the emergence of XBB.1.5, a new Variant of Interest. Our phylogenetic analysis suggests that XBB.1.5 evolved from XBB.1 by acquiring the F486P spike (S) mutation, subsequent to the acquisition of a nonsense mutation in ORF8. Neutralization assays showed similar abilities of immune escape between XBB.1.5 and XBB.1. We determined the structural basis for the interaction between human ACE2 and the S protein of XBB.1.5, showing similar overall structures between the S proteins of XBB.1 and XBB.1.5. The intrinsic pathogenicity of XBB.1.5 in hamsters is lower than that of XBB.1. Importantly, we found that the ORF8 nonsense mutation of XBB.1.5 resulted in impairment of MHC expression. In vivo experiments using recombinant viruses revealed that the XBB.1.5 mutations are involved with reduced virulence of XBB.1.5. Together, these data suggest that the mutations in ORF8 and S could enhance spreading of XBB.1.5 in humans.

3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.05.519085

RESUMO

In late 2022, although the SARS-CoV-2 Omicron subvariants have highly diversified, some lineages have convergently acquired amino acid substitutions at five critical residues in the spike protein. Here, we illuminated the evolutionary rules underlying the convergent evolution of Omicron subvariants and the properties of one of the latest lineages of concern, BQ.1.1. Our phylogenetic and epidemic dynamics analyses suggest that Omicron subvariants independently increased their viral fitness by acquiring the convergent substitutions. Particularly, BQ.1.1, which harbors all five convergent substitutions, shows the highest fitness among the viruses investigated. Neutralization assays show that BQ.1.1 is more resistant to breakthrough BA.2/5 infection sera than BA.5. The BQ.1.1 spike exhibits enhanced binding affinity to human ACE2 receptor and greater fusogenicity than the BA.5 spike. However, the pathogenicity of BQ.1.1 in hamsters is comparable to or even lower than that of BA.5. Our multiscale investigations provide insights into the evolutionary trajectory of Omicron subvariants.

4.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.07.503115

RESUMO

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.


Assuntos
Adenocarcinoma Bronquioloalveolar
5.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.08.05.502758

RESUMO

Unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants imposes us to continuous control measurement. Given the rapid spread, new Omicron subvariant named BA.5 is urgently required for characterization. Here we analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1 comprehensively. Although in vitro growth kinetics of BA.5 is comparable among the Omicron subvariants, BA.5 become much more fusogenic than BA.1 and BA.2. The airway-on-a-chip analysis showed that the ability of BA.5 to disrupt the respiratory epithelial and endothelial barriers is enhanced among Omicron subvariants. Furthermore, in our hamster model, in vivo replication of BA.5 is comparable with that of the other Omicrons and less than that of the ancestral B.1.1. Importantly, inflammatory response against BA.5 is strong compared with BA.1 and BA.2. Our data suggest that BA.5 is still low pathogenic compared to ancestral strain but evolved to induce enhanced inflammation when compared to prior Omicron subvariants.


Assuntos
Infecções por Coronavirus , Inflamação
6.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.05.26.493539

RESUMO

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.


Assuntos
Adenocarcinoma Bronquioloalveolar
7.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.14.480335

RESUMO

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.


Assuntos
Infecções por Coronavirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA